If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9(4b^2-1)=2(9b^2+3)
We move all terms to the left:
9(4b^2-1)-(2(9b^2+3))=0
We multiply parentheses
36b^2-(2(9b^2+3))-9=0
We calculate terms in parentheses: -(2(9b^2+3)), so:We get rid of parentheses
2(9b^2+3)
We multiply parentheses
18b^2+6
Back to the equation:
-(18b^2+6)
36b^2-18b^2-6-9=0
We add all the numbers together, and all the variables
18b^2-15=0
a = 18; b = 0; c = -15;
Δ = b2-4ac
Δ = 02-4·18·(-15)
Δ = 1080
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1080}=\sqrt{36*30}=\sqrt{36}*\sqrt{30}=6\sqrt{30}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{30}}{2*18}=\frac{0-6\sqrt{30}}{36} =-\frac{6\sqrt{30}}{36} =-\frac{\sqrt{30}}{6} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{30}}{2*18}=\frac{0+6\sqrt{30}}{36} =\frac{6\sqrt{30}}{36} =\frac{\sqrt{30}}{6} $
| x2-67x-144=0 | | -9x+5=9 | | 9x-1+6x=4x=5-6x | | 2+m/4=3 | | -2a-9=2a+5 | | 4x+6x+-8=15 | | 0=x^2-4x+1/x^2+2x+3 | | 25n^2-50n+21=0 | | 42x-2(13-5x)1-7=85 | | -2x3=14 | | 7x+2(6x=9)=170 | | 200m-75+57300=60000-175m | | ¼x^2=49 | | -4(2x-3)-(10x+7)-2=-(12x-5)-(4x+9) | | 53-x=20 | | n+65=73 | | -8-3z=19 | | .60f+7.50=16.50 | | 3/5z+2/5z=-3 | | 5w-3+4w=-14-7 | | 7(3x+6)=24-(x+15) | | X+3-4x=2(x-1) | | |4x+9=|4x+5| | | .2w-5=13 | | 180=3x+44+(x+20) | | 3/4=15/n | | .60x=1x-32 | | k-3/4=11 | | 4x-7x=3 | | 8-(2/9x)=(5/6) | | 3x^2=1452 | | 2x+5x+x=220 |